Towards The First Measurement Of Differential ν_u -Argon Charged Current Single Transverse Variable Scattering Cross Sections

A. Papadopoulou for the **pront** Collaboration apapadop@mit.edu

Why Precision Cross Sections Measurements?

Oscillation measurements rely on unprecedented understanding of v-nucleus scattering

BUT ... many known unknowns

- Wide ν energy spectra
- Fermi motion
- Multi-nucleon effects
- Final state interactions (FSI)
-

CC1p 0π Interaction Channel

Simple topology, dominant at energies relevant for MicroBooNE

- Single muon $P_{\mu} > 100 \text{ MeV/c}$
- Single proton $\dot{P}_p > 300 \text{ MeV/c}$
- No neutral pions
- No charged pions with $P_{\pi} > 70 \text{ MeV/c}$

First Analysis Identified Regions Where Improvement Is Required

Phys. Rev. Lett. 125, 201803 (2020)

Current Analysis With Much Higher Statistics & Improved Modeling

- Largest ν_{μ}^{-40} Ar dataset to date
- Latest version of GENIE Event Generator arXiv:2106.09381, MICROBOONE-NOTE-1074-PUB
- Currently finalizing central values& uncertainties
- Also longitudinal variables
- Today, discussion on MC sensitivities

Transverse Components Cancel Out In Absence Of Nuclear Effects

Imbalance In The Presence Of Nuclear Effects

δp_T Probes Fermi Motion

MC uses Local Fermi Gas for ground state

Adding FSI Gives Rise To High Momentum Tail

^{*} Used as the nominal MC by the MicroBooNE Collaboration arXiv:2106.09381, MICROBOONE-NOTE-1074-PUB

Nuclear Model Shifts Peak Location

No Preferred $\delta \alpha_T$ Direction Without FSI and $\delta p_T \sim 0$

Adding FSI Causes $\delta \alpha_T$ To Rise

Alternative MC Doesn't Show "FSI Deceleration"

Nominal MC = GENIE v3.0.6 with MicroBooNE Tune arXiv:2106.09381

Alternative MC = NuWro Nucl.Phys.Proc.Suppl. 229-232 (2012) 499

$\delta \phi_T$ Is Small In The Absence Of FSI

Adding FSI Gives Rise To High Angles Tail

MC Versions Show Differences At Small Angles

Wrap Up

- Single transverse variable sensitivity to nuclear models, FSI and multi-nucleon effects
- Powerful tools to reduce cross section uncertainties
- Performed the first CC1p 0π analysis studying these variables on MicroBooNE

Current Analysis With Much Higher Statistics & Improved Modeling

- Largest ν_{μ} -40Ar dataset to date
- Latest version of GENIE Event Generator arXiv:2106.09381,

MICROBOONE-NOTE-1074-PUB

- Currently finalizing central values
 & uncertainties
- Today, discussion on MC sensitivities

Connections To Electron Scattering

Backup Slides

Largest ν_{μ} -Ar Dataset!

Combined Runs	Number of Events	Beam-On Equivalent
BeamOn	10952.00 ± 104.65	10952.00 ± 104.65
MC	36592.00 ± 191.29	6971.48 ± 83.50
$CC1p0\pi MC$	26953.00 ± 164.17	5135.07 ± 71.66
ExtBNB	2396.00 ± 48.95	681.35 ± 26.10
Dirt	184.00 ± 13.56	143.23 ± 11.97

Run 1	Purity (%)	Overall Efficiency (%)	Contained Part Efficiency (%)
CC1p0π	69.10 ± 0.48	10.70 ± 0.06	28.62 ± 0.17

Single Transverse Variables

Transverse direction characterized by magnitude & 2 angles

Transverse missing momentum

$$\delta \vec{p}_{\rm T} = \vec{p}_{\rm T}^\ell + \vec{p}_{\rm T}^p$$

$$\delta\phi_{\mathrm{T}} = \arccos \frac{-\vec{p}_{T}^{\ell} \cdot \vec{p}_{\mathrm{T}}^{N}}{p_{\mathrm{T}}^{\ell} p_{\mathrm{T}}^{N}}$$
$$\delta\alpha_{\mathrm{T}} = \arccos \frac{-\vec{p}_{T}^{\ell} \cdot \delta\vec{p}_{\mathrm{T}}}{p_{\mathrm{T}}^{\ell} \delta p_{\mathrm{T}}}$$

Phys. Rev. C 94, 015503 (2016)

Phys. Rev. Lett. 121, 022504

Single Transverse Variables

Nuclear Models In The GENIE Event Generator

Better Data/Simulation Agreement From Improved Modeling

- GENIE v2.12.2 \rightarrow GENIE v3.0.6
- Tuned CCQE and CCMEC models to T2K ν_{μ} CC0 π data
- T2K data is on a carbon target
 - → Tuning seems to give good agreement with MicroBooNE's argon-target data

MICROBOONE-NOTE-1074-PUB

Current measurement MICROBOONE-NOTE-1069-PUB

GENIE v3.0.6 G18 10a 02 11a

```
GENIE v3.0.6 models used:

QE/MEC → J. Nieves, J.E. Amaro, M. Valverde Phys. Rev. C 70,055503 (2004) and R. Gran, J. Nieves, F. Sanchez. M. Vicente-Vacas Phys. Rev. D 88, 113007 (2013)

RES/COH → C. Berger, L. Sehgal Phys. Rev. D 76, 113004 (2007), Phys. Rev. D 79,053003 (2009)

FSI → work by L. Salcedo, E. Oset, M. Vicente-Vacas, C. Garcia-Recio

Nucl. Phys. A 484,557-592 (1988) and V. Pandharipande, S.C. Pieper Phys. Rev. C 45,791-798 (1992)
```


40

60

80

 $\delta \phi_{_{\rm T}} [{\rm deg}]$

140 160 180

- High statistics& fine binning
- Currently finalizing central values
 uncertainties
- Excellent handle to study known unknowns
- Today discussion on MC sensitivities